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Targeting unknown and unstable periodic orbits
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We present a method to target and subsequently cofitnoécessary orbits of specified period but other-
wise unknown stability and position. For complex systems where the dynamics is often [migedcoexist-
ence of regular and chaotic regions in area-presergttagiltonian systems, this targeting algorithm offers
a way to not only gently bring the system from the chaotic domain to an unstable periodigngreit control
is applied, but also to accesstableregions of phase spadehere control is not necessariyom within the
stochastic regions. The technique is quite general and applies equally well to dissipative or conservative
discrete maps and continuous flows.
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One measure of scientific and technological progress iby integration of a differential equatipnor reconstructed
perhaps our improving ability to control the outcome of vari-from an experimental signal by standard embedding tech-
ous processes of interest. This is especially true when ongiques [7,8]. We plan local interventions through pro-
considers a complex systefi], the dynamics of which is grammed alterations of an accessible system’s pararpeter
rich, diverse, and often of “constrained” stochasticity. Sincearound a nominal valup,. The system is supposed chaotic
the theoretical2] and experimentdl3] demonstration of the for p~ py with a chaotic regime offering an unlimitethrge
possibility of control of deterministic chaos, we have wit- number of unstable periodic orbits POS. In order to inter-
nessed a wealth of applications and improvements and altevene, we must provide intermediate links, ilegal targets
natives over the initial approach of Ott, Grebogi, and Yorkewhich may be part of a trajectory leading to a periadrbit.
(OGY) [2] that have been proposed and implemen(ed We achieve this by using a recently proposed method of
and references thergin Schmelcher and Diakon¢9] that efficiently detects periodic

The main feature of most control algorithms is to applyorbits in chaotic systems. The key of the method is the ap-
smalland carefully chosen perturbations to an accessible sysglication to the original system of a universal linear transfor-
tem’s parameter in order to maintain its motion in one of itsmation that modifies the stability of the UPOs without alter-
many unstable states. For the perturbations to be small, thégig their positions in phase space. We will refer to the
are usually applied if the system enters a small neighborhootéchnique as the stability transform algorith(8TA). Al-
of the unstable state of interest. One then relies on the ergodhough first derived and exploited for dissipative maps, it is
icity of the chaotic motion to guarantee that the system willalso applicable to area-preserving mapping8] and can
eventually visit a region close to the unstable state. Quiteasily be extended to flowd1]. For our purpose, the deci-
often though, the waiting time can be too long for the controlsive property of the method is itdobal character. Indeed, in
to take place and targeting stratediBg®] are needed to steer the phase space of the original system, all initial states are
the trajectory to the desired region. made to converge to a component of a periodic orbit or to

The task ofstandardtargeting algorithms is to construct a diverge to infinity. The basins of attraction of the sets of
(possibly optimal path that joins an initial stateto a preas- periodic orbits(of a given perioglare large and cover a size-
signed target stat€. In order to reacliT, one pieces together able portion of phase space when compared to the neighbor-
local information that is successively used to construct @ood used in standard control strategies. The particular trans-
routing network to the final destination. Therefore local andformation (for the search for period orbits) is given by
global knowledge of phase space must be known or acquired
to complete the procedure. In contrast, we propose a simple,
general, and efficient algorithm to target and control states of Vie1=Yi+ANC[F™(y: .po)—Vil, 2
chaotic systems with the more modest goal of reducing the
complexity of the dynamics by bringing the system to one of
its periodic orbits for a specific perian. Nothing is further ~wherey denotes the state of the transformed systerinO
assumed, however, about the position and stability of the<1 is an adjustable constarf(™(y,p) stands for them
final target(i.e., one ignoresa priori which of the many times iterated map, an@ is an orthogonaD XD matrix
possible periodn states will actually be reached and stabi- with elementCj; € {0,+1} and whose rows and columns

lized). contain only one entry different from zetsee[9] for further
Let us consider that the statg of a system is represented detailg. Our algorithm reads therefore like this.
by a D-dimensional nonlinear map First, since an STA orbit will eventually bring the trans-
formed system to a component of a periodic orbit, we will
Xn+1=F(Xn,P), (1)  adjust the control parametprsuch that, for a perioda orbit,

the next iterate<n+mE1IIs on(or neay the position of docal
whereF is either given explicitly, obtained numericallg.g.,  target defined by x=x,+\C[F™(x,,po) —X,] as pre-
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scribed by one STA step. In essence, we attempt to attach the 150
chaotic orbit to a nearby STA trajectory by changipg to ™[ Control off: ——J Gontrol on: W—_
Pr=Po+ Pn-

Second, to obtain an explicit expression #yp,,, we im-
pose thecontrol criterion that |[X—X,.+m(Pn)|| should be
minimum. For|8p,|<1, the linearization

Xn+m(pn):F(m)(Xnvpn)NF(m)(Xnipo)"_Vnapn’ 3
whereV,, expresses the parametric variation of the map at

Xn, 1.€.,Vu=D,F™(x,,po), together with the control crite-
rion, gives

6 8 1.IO 12 14
n (10* iterates)

[1X=Xn+ |~ 11Dy = V8| | = minimum. )
FIG. 1. Targeting and control scenario for thérida map @,
Carrying out the minimization with D,=[\C =1.4 andBy=0.3). Period-1, -2, and -4 orbits are successively
—1][F'™(x,,po) — Xn], ONne readily obtains targeted and held under control fo20* iterations.
8pn=Dy- V, /||, (5)  The regime investigated is for nominal valuég=1.4 and

B,=0.3. We use the parametarfor control and se®pay

Third and finally, if this calculated perturbation is smaller =0-00%. To simulate an experimental context, we suppose
than our maximum tolerable rangép,| < Spmax<|pol, the that we do not know the application explicitly but rather

perturbed system evolves accordingo. ,=F™ (x,,p;) estimateF(x,,,p) to apply Eq.(5) with a simple nonlinear
otherwise it continues freely with,= po. predictor (the Lorenz method of analog45]) applied to a

A number of points are worth mentioning. For one- previously recorded data set. The same predictor is also used

dimensional(1D) systems, as soon as a small neighborhood® oPtainV, from a second recorded data set createdpfor

of a periodic point is reached, the control step is identical to= Pot AP (Ap<<po). Despite its simplicity, the predictor al-
the occasional proportional feedbddi] for a specific value  |0Ws the targeting procedure to perform quite well. The re-
of \. For higher dimensions, as expected also, once the ta_ﬁ_ults of a particular scenario are shown on Fig. 1. The control
geting has been successful to bring the trajectory close to & held, in turn, for 2_’<104 iterates of period-1, -2, and -4
UPO, Eq.(5) becomes similar to the minimal expected de__orblts. Once a UEO is controlled fo_r the required number of
viation method introduced ifil3] for A\=0. For flows, the iterates, control is released amip, is set to 0 for 2<10*

map F™ is obtained by sampling the continuous trajectory'ter?‘tes before the r!ext C(_)ntrol attempt. Qne o_bserves that for
on a Poincaresection at everyn piercing. Furthermore, if a Period 2, the transient time to control is quite large X
learning phasei.e., a sufficiently long preregistered time < 10" iterates. The small value oféppax [(1/2)% of the
series, is available, one can also use the information gaingRrameteR,] was actually chosen to display a long transient
to approximate=™ andV,,. Experience shows that our tar- interval. For larger values aipmay, say ten times larger, the
geting algorithm remains robust under these conditions‘!"_a't'”g times are essentially instantaneous on the scale of
Moreover, if the time series is used to map out beforehandi9: 1. . o

the basins of attraction of certain specific UPOs, the targeting Our next example describes conservative billiard dynam-
algorithm can be turned into directedtargeting and control €S [16], consisting of a particle moving on a pIane't.)ounded
procedure to well-defined targets. One further attractive feaby @ closed curve. It serves to illustrate the transition from
ture of this method is that besides its ability to target a peri-Strict regularity(integrability) to chaogergodicity in Hamil-

odic orbit from afar, the STA step can bring the system to arfonian systeni17] and bears important connectionsofoan-
unstableor a stable periodic orbit, since the stability of the tum chaosas well[18]. Besides its fundamental interest, this
latter is unchanged under the transformation. For HamilSystem has important physical relevance in that it adequately
tonian systems with mixed dynamig$4], we can therefore ~Simulates the behavior of a photon trap in microcavife3
expect to access regions of regularity from within the sto-2nd helps understand the emission patterns of microlasers
chastic sea. Concurrently, the method offers the possibility t620] in the so-called whispering-gallery and bowtie modes
cross Kolmogorov-Arnold-MoseiKAM ) tori and accelerate [21]. with this application in mind, we have chosen to study

transport to distant regions of phase space. the 2D oval billiard;
To illustrate the flexibility and some of the capabilities of

the algorithm, we have chosen three 2D examples of increas- r(¢)=1+ecos2p,

ing complexity: a dissipative map, an area-preserving map-

ping, and an Hamiltonian flow. which approximates well the shape of some microcavity la-
The first system under study is the ésm map sers. Geometrically, the parameteris a measure of the

asymmetry of the surface with respect to circularity, and dy-
Xns1=1+Yn—AX%,  Ypi1=BX,. namically, it is a measure of nonintegrability siree 0 rep-
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' ' ' ' ' ' ' cated by a star and lies in a region of regularity. We apply the
(a) programmed perturbation @(pma=0.05,) for a trajec-

tory initially in the chaotic region and set the algorithm for
the targeting of period 4. Figurgld is an enlarged capsule
where one shows the path taken by a few iterates of a free
trajectory versus the controlled trajectory. It is clear that the
controlled orbit has been captured by the STA trajectory
leading to the stable period-4 orbit lying within a regular

] island. A usual control strategy would have been oblivious to
the presence of that stable island. Furthermore, the attach-
ment takes place at a distance of order one whereas usual
1 control techniques impose a control neighborhood of at least
two orders of magnitude smaller to keep the perturbations
small. The targeting and subsequent stabilization is displayed
in Fig. 2(c). Once control is released, the particle stays on the
stable orbit that corresponds here to a bowtie-shaped orbit
(insed. In this simulation, the targeting procedure has al-
lowed a transition from an unstable whispering-gallery orbit
[an initial condition around the upper part of Figag to a
stable bow-tie trajectory. In the context of microcavity lasers,
this means a transition from a nondirectional low-power la-
ser to a highly directional high-power orj@1]. This may
potentially be quite useful, and possible experimental imple-
mentations of this technique are being examined.

Our final example is a continuous, two degrees of free-
dom (4D phase spagaHamiltonian system. It represents the
motion of an electron under the combined influence of a
Coulomb and a magnetic field. It goes under the naliae
10 15 20 925 magnetic Kepler problerand just as the previous system, it

P occupies central stage in classical and quantum chaos re-
searcH 18]. It has proven usefuR2] to consider gpseudoy
Hamiltonian function in scaled semiparabolic coordinates

* Components of period-4 orbit
o Controlled trajectory
A Free trajectory

A

20k

L8

1.4}

1.2}

F ] (here for angular momentuin=0),
(o 0D
i_ _ ﬁ=%(pi+p§>—ew2+v2>+%szz(;ﬁwz)Ez
P 3r 1
ol ] for the dynamical evolution, where acts as a dynamical
A ] pareirgseter and is related to the physical enekgyy e
: g;?, Control off: — =y “E. T_he_parame_tery: B/B. denotes the strength of
of : & Control on: mmm the magnetic field relative to the uBt=2.35x10° T.Ase
Qp — " | is varied, the classical flow ofi covers a wide range of
0 1 2 3 4 5 6 7 Hamiltonian dynamics reaching from bound, nearly inte-
n (104 iterates) grable behavior to completely chaotic and unbound motion

N [22]. Control of this chaotic motion by a fully numerical
FIG. 2. (a) Phase space for the oval bIIIIard30(=O.15). A OoGY technique has been recenﬂy reporﬁéﬁ]_
(stablg period-4 orbit is indicated by stargh) enlarged section of The dimension reductioffrom 4D to 2D and the dis-
phase space showing the path followed by the free and the cons eatization to obtairlF(m)(x, p) is performed by observing the

trolled trajectories;(c) targeting and control scenario where the éiynamics on the Poincamsection defined by.=0, ,iL>O.

For the target and control scenario, we use paraneetéth
nominal valueey=—0.2 (6pmax=0.09€0|). We ask the tar-
resents the integrable limit. For ak= 0, there are finite re- geting and control of two different orbits: period-2 and
gions of phase space that contain chaotic trajectories. In Figreriod-3 orbits, both for X 10* iterates and turn the control
2(a), we show the mixed and complex structure of phaseoff for the first 2x 10* iterates before each attempt. Results
space forey= 0.15: the state variables are the incident anglesire shown in Fig. 3. The first controlled period is in the
on the surface{a,}, and the polar angles of the point of chaotic band. When control is released, the motion returns to
impact,{ ¢,}. The position of a stable period-4 orbit is indi- the chaotic regime. The period-3 orbit, however, lies in a

motion remains periodic after the control is turned off.
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lar island (5x10 2 acros$ outside of which anunstable

period-3 orbit is located. This proximity of two period-3 or-
bits produces intricate basins of attraction for the STA step
and a corresponding longer time to “decide” between the
possible targets. This situation is, however, atypical.

We have presented a targeting and control algorithm that
combines the strength of a global periodic orbit seeking pro-
cedure with a control minimization that directs a chaotic sys-
tem to an orderly state. The method is quite general as it
applies to discrete and continuous time evolution of dissipa-
tive or conservative character. Its ability to operate with
modest information and to reac$table states of systems
displaying mixed dynamics stands out as an important fea-
ture not easily available in other targeting strategies. As the
interest for complex systems continues to grow, our method

FIG. 3. Targeting and control scenario for the diamagneticoffers a possibility for the reduction of their dynamical com-
Kepler problem &,= —0.2). The period-2 orbit reached is unstable plexity, whether it be for physical, engineering or therapeutic

whereas the period-3 orbit is stable.

regular island. Once the system is brought to this stable orbi
control can be released and the motion stays regular. Th
corresponding 3D trajectories are shown in the insets. On

purposes. Details of our approa@éfficiency, robustness to
noise, etq. are being prepared for publication together with
{'ts extension to a wider class of systerfesg., reversible
s‘éystems[23] where conservativand dissipative behaviors
céoexis).

notices that the waiting time to stabilize the period-3 orbit We acknowledge financial support by FCARuUeeq
appears quite long~¢4x 10¢ iterates. The reason for this is and NSERQCanada The authors are grateful to Carl Rob-
interesting. The stable orbit lies in the middle of a tiny regu-ert for a careful reading of the manuscript.

[1] R. Badii and A. Politi,Complexity, Hierarchical Structures and Collisions edited by Yukikazu Itikawaet al., AIP Conf. Proc.
Scaling in Physic§Cambridge University Press, Cambridge, 500 (AIP, Melville, NY, 2000, p. 551; B. Pourbohloul, B.
1999. Doyon, and L.J. Dubéunpublished

[2] E. Oftt, C. Grebogi, and J.A. Yorke, Phys. Rev. Léd, 1196  [12] E.R. Hunt, Phys. Rev. Let67, 1953(199J).

(1990. [13] C. Reyl, L. Flepp, R. Badii, and E. Brun, Phys. ReWE 267
[3] W.L. Ditto, S.N. Rauseo, and M.L. Spano, Phys. Rev. L&St. (1993.
3211(1990. [14] R.S. MacKay and J.D. Meisslamiltonian Dynamical Systems

[4] S. Boccaletti, C. Grebogi, Y.-C. Lai, H. Mancini, and D. Maza, (Adam Hilger, Bristol, 198Y.

Phys. Rep329, 103 (2000.

[15] E.N. Lorenz, J. Atmos. ScR6, 636 (1969.

[5] T. Shinbrotet al,, Phys. Rev. Lett65, 3215(1990; E.J. Kos-  [16] G.D. Birkhoff, Acta Math.50, 359 (1927.
telich et al, Phys. Rev. E47, 305 (1993; E. Barretoet al, [17] M.V. Berry, Eur. J. Phys2, 91 (1981); M. Robnik, J. Phys. A
ibid. 51, 4169(1999; Y.C. Lai, Phys. Lett. A221, 376 (1996). 16, 3971(1983.

[6] E.M. Bollt and J.D. Meiss, Physica B1, 280 (1995; C.G. [18] R. Blumel and W.P. Reinhard€haos in Atomic Physid€am-

Schroer and E. Ott, Chads 512 (1997).

bridge University Press, Cambridge, 1997

[7] F. Takens, inDynamical Systems and Turbuleneslited by  [19] S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearton, and R.A.
D.A. Rand and L.S. Young, Lecture Notes in Mathematics \Vol. Logan, Appl. Phys. Lett60, 289 (1992.

898 (Springer-Verlag, New York, 1981

[20] J.U. Nackel and A.D. Stone, Natur@é.ondon 385, 45 (1997.

[8] T. Sauer, J. Yorke, and M. Casdagli, J. Stat. Pi8§.579 [21] C. Gmachl, F. Capasso, E.E. Narimanov, J.Ucke, A.D.

(1991). Stone, J. Faist, D.L. Sivco, and A.Y. Cho, Scier&89, 1556
[9] P. Schmelcher and F.K. Diakonos, Phys. Rev. Le#. 4733 (1998.

(1997; Phys. Rev. E57, 2739 (1998; F.K. Diakonos, P. [22] J.B. Delos, S.K. Knudson, and D.W. Noid, Phys. ReVv3@

Schmelcher, and O. Biham, Phys. Rev. L&t, 4349(1998. 1208(1984); H. Friedrich and D. Wintgen, Phys. Rel83 37

[10] B. Pourbohloul, Ph.D. thesis, Universitaval, 1999.

(1989.

[11] B. Pourbohloul and L.J. Dubes-print nlin-sys/0008001; L.J. [23] J.A.G. Roberts and G.R.W. Quispel, Phys. R&i6 63
Dubeand P. Despi® in The Physics of Electronic and Atomic (1992.

037202-4



