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Targeting unknown and unstable periodic orbits
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~Received 21 May 2001; published 7 March 2002!

We present a method to target and subsequently control~if necessary! orbits of specified period but other-
wise unknown stability and position. For complex systems where the dynamics is often mixed@e.g., coexist-
ence of regular and chaotic regions in area-preserving~Hamiltonian! systems#, this targeting algorithm offers
a way to not only gently bring the system from the chaotic domain to an unstable periodic orbit~where control
is applied!, but also to accessstableregions of phase space~where control is not necessary! from within the
stochastic regions. The technique is quite general and applies equally well to dissipative or conservative
discrete maps and continuous flows.
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One measure of scientific and technological progres
perhaps our improving ability to control the outcome of va
ous processes of interest. This is especially true when
considers a complex system@1#, the dynamics of which is
rich, diverse, and often of ‘‘constrained’’ stochasticity. Sin
the theoretical@2# and experimental@3# demonstration of the
possibility of control of deterministic chaos, we have w
nessed a wealth of applications and improvements and a
natives over the initial approach of Ott, Grebogi, and Yor
~OGY! @2# that have been proposed and implemented~@4#
and references therein!.

The main feature of most control algorithms is to app
smalland carefully chosen perturbations to an accessible
tem’s parameter in order to maintain its motion in one of
many unstable states. For the perturbations to be small,
are usually applied if the system enters a small neighborh
of the unstable state of interest. One then relies on the er
icity of the chaotic motion to guarantee that the system w
eventually visit a region close to the unstable state. Q
often though, the waiting time can be too long for the cont
to take place and targeting strategies@5,6# are needed to stee
the trajectory to the desired region.

The task ofstandardtargeting algorithms is to construct
~possibly optimal! path that joins an initial stateI to a preas-
signed target stateT. In order to reachT, one pieces togethe
local information that is successively used to construc
routing network to the final destination. Therefore local a
global knowledge of phase space must be known or acqu
to complete the procedure. In contrast, we propose a sim
general, and efficient algorithm to target and control state
chaotic systems with the more modest goal of reducing
complexity of the dynamics by bringing the system to one
its periodic orbits for a specific periodm. Nothing is further
assumed, however, about the position and stability of
final target ~i.e., one ignoresa priori which of the many
possible period-m states will actually be reached and sta
lized!.

Let us consider that the statexn of a system is represente
by a D-dimensional nonlinear map

xn115F~xn ,p!, ~1!

whereF is either given explicitly, obtained numerically~e.g.,
1063-651X/2002/65~3!/037202~4!/$20.00 65 0372
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by integration of a differential equation!, or reconstructed
from an experimental signal by standard embedding te
niques @7,8#. We plan local interventions through pro
grammed alterations of an accessible system’s parametp
around a nominal valuep0. The system is supposed chaot
for p;p0 with a chaotic regime offering an unlimited~large!
number of unstable periodic orbits~UPOs!. In order to inter-
vene, we must provide intermediate links, i.e.,local targets,
which may be part of a trajectory leading to a period-m orbit.

We achieve this by using a recently proposed method
Schmelcher and Diakonos@9# that efficiently detects periodic
orbits in chaotic systems. The key of the method is the
plication to the original system of a universal linear transf
mation that modifies the stability of the UPOs without alte
ing their positions in phase space. We will refer to t
technique as the stability transform algorithm~STA!. Al-
though first derived and exploited for dissipative maps, it
also applicable to area-preserving mappings@10# and can
easily be extended to flows@11#. For our purpose, the deci
sive property of the method is itsglobal character. Indeed, in
the phase space of the original system, all initial states
made to converge to a component of a periodic orbit or
diverge to infinity. The basins of attraction of the sets
periodic orbits~of a given period! are large and cover a size
able portion of phase space when compared to the neigh
hood used in standard control strategies. The particular tr
formation ~for the search for period-m orbits! is given by

yi 115yi1lC@F(m)~yi ,p0!2yi # , ~2!

wherey denotes the state of the transformed system, 0,l
!1 is an adjustable constant,F(m)(y,p) stands for them
times iterated map, andC is an orthogonalD3D matrix
with elementCi j P$0,61% and whose rows and column
contain only one entry different from zero~see@9# for further
details!. Our algorithm reads therefore like this.

First, since an STA orbit will eventually bring the tran
formed system to a component of a periodic orbit, we w
adjust the control parameterp such that, for a period-m orbit,
the next iteratexn1m falls on ~or near! the position of alocal

target defined by x̄5xn1lC@F(m)(xn ,p0)2xn# as pre-
©2002 The American Physical Society02-1
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scribed by one STA step. In essence, we attempt to attach
chaotic orbit to a nearby STA trajectory by changingp0 to
pn5p01dpn .

Second, to obtain an explicit expression fordpn , we im-
pose thecontrol criterion that i x̄2xn1m(pn)i should be
minimum. Forudpnu!1, the linearization

xn1m~pn!5F(m)~xn ,pn!;F(m)~xn ,p0!1Vndpn , ~3!

whereVn expresses the parametric variation of the map
xn , i.e.,Vn5DpF(m)(xn ,p0), together with the control crite
rion, gives

uux̄2xn1muu;uuDn2Vndpnuu5minimum. ~4!

Carrying out the minimization with Dn[@lC
21#@F(m)(xn ,p0)2xn#, one readily obtains

dpn5Dn•Vn /iVni2. ~5!

Third and finally, if this calculated perturbation is small
than our maximum tolerable rangeudpnu<dpmax!up0u, the
perturbed system evolves according toxn1m5F(m)(xn ,pn)
otherwise it continues freely withpn5p0.

A number of points are worth mentioning. For on
dimensional~1D! systems, as soon as a small neighborho
of a periodic point is reached, the control step is identica
the occasional proportional feedback@12# for a specific value
of l. For higher dimensions, as expected also, once the
geting has been successful to bring the trajectory close
UPO, Eq.~5! becomes similar to the minimal expected d
viation method introduced in@13# for l50. For flows, the
map F(m) is obtained by sampling the continuous trajecto
on a Poincare´ section at everym piercing. Furthermore, if a
learning phase, i.e., a sufficiently long preregistered tim
series, is available, one can also use the information ga
to approximateF(m) andVn . Experience shows that our ta
geting algorithm remains robust under these conditio
Moreover, if the time series is used to map out beforeh
the basins of attraction of certain specific UPOs, the targe
algorithm can be turned into adirectedtargeting and contro
procedure to well-defined targets. One further attractive f
ture of this method is that besides its ability to target a p
odic orbit from afar, the STA step can bring the system to
unstableor a stable periodic orbit, since the stability of th
latter is unchanged under the transformation. For Ham
tonian systems with mixed dynamics@14#, we can therefore
expect to access regions of regularity from within the s
chastic sea. Concurrently, the method offers the possibilit
cross Kolmogorov-Arnold-Moser~KAM ! tori and accelerate
transport to distant regions of phase space.

To illustrate the flexibility and some of the capabilities
the algorithm, we have chosen three 2D examples of incr
ing complexity: a dissipative map, an area-preserving m
ping, and an Hamiltonian flow.

The first system under study is the He´non map

xn11511yn2Ax2, yn115Bxn .
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The regime investigated is for nominal valuesA051.4 and
B050.3. We use the parameterA for control and setdpmax
50.005A0. To simulate an experimental context, we suppo
that we do not know the application explicitly but rath
estimateF(xn ,p) to apply Eq.~5! with a simple nonlinear
predictor ~the Lorenz method of analogs@15#! applied to a
previously recorded data set. The same predictor is also u
to obtainVn from a second recorded data set created fop
5p01Dp (Dp!p0). Despite its simplicity, the predictor al
lows the targeting procedure to perform quite well. The
sults of a particular scenario are shown on Fig. 1. The con
is held, in turn, for 23104 iterates of period-1, -2, and -4
orbits. Once a UPO is controlled for the required number
iterates, control is released anddpn is set to 0 for 23104

iterates before the next control attempt. One observes tha
period 2, the transient time to control is quite large (;2
3104 iterates!. The small value ofdpmax @(1/2)% of the
parameterA0# was actually chosen to display a long transie
interval. For larger values ofdpmax, say ten times larger, the
waiting times are essentially instantaneous on the scal
Fig. 1.

Our next example describes conservative billiard dyna
ics @16#, consisting of a particle moving on a plane bound
by a closed curve. It serves to illustrate the transition fro
strict regularity~integrability! to chaos~ergodicity! in Hamil-
tonian system@17# and bears important connections toquan-
tum chaosas well@18#. Besides its fundamental interest, th
system has important physical relevance in that it adequa
simulates the behavior of a photon trap in microcavities@19#
and helps understand the emission patterns of microla
@20# in the so-called whispering-gallery and bowtie mod
@21#. With this application in mind, we have chosen to stu
the 2Doval billiard;

r ~w!511e cos 2w,

which approximates well the shape of some microcavity
sers. Geometrically, the parametere is a measure of the
asymmetry of the surface with respect to circularity, and d
namically, it is a measure of nonintegrability sincee50 rep-

FIG. 1. Targeting and control scenario for the He´non map (A0

51.4 andB050.3). Period-1, -2, and -4 orbits are successiv
targeted and held under control for 23104 iterations.
2-2
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resents the integrable limit. For alleÞ0, there are finite re-
gions of phase space that contain chaotic trajectories. In
2~a!, we show the mixed and complex structure of pha
space fore050.15: the state variables are the incident ang
on the surface,$an%, and the polar angles of the point o
impact,$fn%. The position of a stable period-4 orbit is ind

FIG. 2. ~a! Phase space for the oval billiard (e050.15). A
~stable! period-4 orbit is indicated by stars;~b! enlarged section of
phase space showing the path followed by the free and the
trolled trajectories;~c! targeting and control scenario where th
stable bowtie mode is reached from within the chaotic sea.
motion remains periodic after the control is turned off.
03720
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cated by a star and lies in a region of regularity. We apply
programmed perturbation one (dpmax50.05e0) for a trajec-
tory initially in the chaotic region and set the algorithm f
the targeting of period 4. Figure 2~b! is an enlarged capsul
where one shows the path taken by a few iterates of a
trajectory versus the controlled trajectory. It is clear that
controlled orbit has been captured by the STA traject
leading to the stable period-4 orbit lying within a regul
island. A usual control strategy would have been oblivious
the presence of that stable island. Furthermore, the att
ment takes place at a distance of order one whereas u
control techniques impose a control neighborhood of at le
two orders of magnitude smaller to keep the perturbati
small. The targeting and subsequent stabilization is displa
in Fig. 2~c!. Once control is released, the particle stays on
stable orbit that corresponds here to a bowtie-shaped o
~inset!. In this simulation, the targeting procedure has
lowed a transition from an unstable whispering-gallery or
@an initial condition around the upper part of Fig. 2~a!# to a
stable bow-tie trajectory. In the context of microcavity lase
this means a transition from a nondirectional low-power
ser to a highly directional high-power one@21#. This may
potentially be quite useful, and possible experimental imp
mentations of this technique are being examined.

Our final example is a continuous, two degrees of fre
dom ~4D phase space! Hamiltonian system. It represents th
motion of an electron under the combined influence o
Coulomb and a magnetic field. It goes under the namedia-
magnetic Kepler problemand just as the previous system,
occupies central stage in classical and quantum chaos
search@18#. It has proven useful@22# to consider a~pseudo-!
Hamiltonian function in scaled semiparabolic coordina
~here for angular momentumL50),

ĥ5
1

2
~pm

2 1pn
2!2e~m21n2!1

1

8
m2n2~m21n2![2

for the dynamical evolution, wheree acts as a dynamica
parameter and is related to the physical energyE by e
5g22/3E. The parameterg5B/Bc denotes the strength o
the magnetic field relative to the unitBc.2.353105 T. As e

is varied, the classical flow ofĥ covers a wide range o
Hamiltonian dynamics reaching from bound, nearly in
grable behavior to completely chaotic and unbound mot
@22#. Control of this chaotic motion by a fully numerica
OGY technique has been recently reported@11#.

The dimension reduction~from 4D to 2D! and the dis-
cretization to obtainF(m)(x,p) is performed by observing the
dynamics on the Poincare´ section defined bym50, ṁ.0.
For the target and control scenario, we use parametere with
nominal valuee0520.2 (dpmax50.05ue0u). We ask the tar-
geting and control of two different orbits: period-2 an
period-3 orbits, both for 23104 iterates and turn the contro
off for the first 23104 iterates before each attempt. Resu
are shown in Fig. 3. The first controlled period is in th
chaotic band. When control is released, the motion return
the chaotic regime. The period-3 orbit, however, lies in

n-

e
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BRIEF REPORTS PHYSICAL REVIEW E 65 037202
regular island. Once the system is brought to this stable o
control can be released and the motion stays regular.
corresponding 3D trajectories are shown in the insets. O
notices that the waiting time to stabilize the period-3 or
appears quite long (;43104 iterates!. The reason for this is
interesting. The stable orbit lies in the middle of a tiny reg

FIG. 3. Targeting and control scenario for the diamagne
Kepler problem (e0520.2). The period-2 orbit reached is unstab
whereas the period-3 orbit is stable.
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lar island (531023 across! outside of which anunstable
period-3 orbit is located. This proximity of two period-3 o
bits produces intricate basins of attraction for the STA s
and a corresponding longer time to ‘‘decide’’ between t
possible targets. This situation is, however, atypical.

We have presented a targeting and control algorithm
combines the strength of a global periodic orbit seeking p
cedure with a control minimization that directs a chaotic s
tem to an orderly state. The method is quite general a
applies to discrete and continuous time evolution of dissi
tive or conservative character. Its ability to operate w
modest information and to reachstable states of systems
displaying mixed dynamics stands out as an important f
ture not easily available in other targeting strategies. As
interest for complex systems continues to grow, our meth
offers a possibility for the reduction of their dynamical com
plexity, whether it be for physical, engineering or therapeu
purposes. Details of our approach~efficiency, robustness to
noise, etc.! are being prepared for publication together w
its extension to a wider class of systems~e.g., reversible
systems@23# where conservativeand dissipative behaviors
coexist!.

We acknowledge financial support by FCAR~Québec!
and NSERC~Canada!. The authors are grateful to Carl Rob
ert for a careful reading of the manuscript.
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